RESEARCH INTERESTS
Dr. Liu’s research mainly focuses on the interactions between microbes and their micro-habitats in drinking water & wastewater treatment and transport systems, as well as the development of new computational methodologies to explore feedback mechanisms among water consumers, drinking water systems and system managers.
EDUCATION
Ph.D. | Civil Engineering, North Carolina State University, Raleigh, USA. 2009 |
M.S. | Hydrology and Water Resource, Hefei University of Technology, Hefei, China. 2004 |
B.S. | Water Supply and Sewage Engineering, Hefei University of Technology, Hefei, China. 1995 |
PROFESSIONAL EXPERIENCE
2017.01-present | Professor, Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology |
2012.01-2016.12 | Associate Professor, Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology |
2005.01-2009.12 | Research Assistant, North Carolina State University, USA |
2001.01-2011.12 | Lecturer, Department of Civil Engineering, Hefei University of Technology |
1995.07-2000.12 | Teaching Assistant, Department of Civil Engineering, Hefei University of Technology |
RESEARCH PROGRAMS
Natural Science Foundation of China (51479046): Effects of micro-hydraulic conditions on early-stage microbial aggregation in water distribution networks (PI), 2015-2018.
Anhui Provincial Natural Science Foundation (1208085ME75): Hazard risk-based rehabilitation of urban stormwater drainage systems (PI), 2012-2014.
Natural Science Foundation of China (51108148): Intelligent identification, assessment and regulation of regional drought risk based on chain transfer scenario simulation (Main investigator), 2016-2019.
TEACHING ACTIVITY
Water supply and drainage network systems, Undergraduate Course (HFUT), 2010-present
Water network theory and analysis, Graduate Course (HFUT), 2013-present
PUBLICATIONS
B. Du, Y. Gu, G. Chen, G. Wang, L. Liu*, Flagellar motility mediates early-stage bio fi lm formation in oligotrophic aquatic environment, Ecotoxicol. Environ. Saf. 194 (2020) 110340. doi:10.1016/j.ecoenv.2020.110340.
Y. Liu, R. Shan, G. Chen, L. Liu*, Linking flow velocity-regulated EPS production with early-stage biofilm formation in drinking water distribution systems, Water Supply. (2020) 1–13. doi:10.2166/wst.2015.440.
G. Wang, N. Han, L. Liu, Z. Ke, B. Li, G. Chen*, Molecular density regulating electron transfer efficiency of S. oneidensis MR-1 mediated roxarsone biotransformation, Environ. Pollut. 262 (2020) 114370. doi:10.1016/j.envpol.2020.114370.
R. Zhao, G. Chen*, L. Liu, W. Zhang, Y. Sun, B. Li, G. Wang, Bacterial foraging facilitates aggregation of Chlamydomonas microsphaera in an organic carbon source-limited aquatic environment, Environ. Pollut. 259 (2020) 113924. doi:10.1016/j.envpol.2020.113924.
G. Chen, N. Zhu, Z. Hu, L. Liu, G-Q. Wang, G. Wang*, Motility changes rather than EPS production shape aggregation of Chlamydomonas microsphaera in aquatic environment, Environ. Technol. 0 (2020) 1–24. doi:10.1080/09593330.2020.1718216.
G. Chen, R. Xu, L. Liu, H. Shi, G. Wang, G. Wang*, Limited carbon source retards inorganic arsenic release during roxarsone degradation in Shewanella oneidensis microbial fuel cells, Appl. Microbiol. Biotechnol. 102 (2018) 8093–8106.
G. Wang, Y. Wang, L. Liu, Y. Jin, N. Zhu, X. Li, G. Wang, G. Chen*, Comprehensive assessment of microbial aggregation characteristics of activated sludge bioreactors using fuzzy clustering analysis, Ecotoxicol. Environ. Saf. 162 (2018) 296–303. doi:10.1016/j.ecoenv.2018.06.096.
G. Chen, H. Liu, W. Zhang, B. Li, L. Liu, G. Wang*, Roxarsone exposure jeopardizes nitrogen removal and regulates bacterial community in biological sequential batch reactors, Ecotoxicol. Environ. Saf. 159 (2018) 232–239. doi:10.1016/j.ecoenv.2018.05.012.
L. Liu, Q. Hu, Y. Le, G. Chen, Z. Tong, Q. Xu, G. Wang*, Chlorination-mediated EPS excretion shapes early-stage biofilm formation in drinking water systems, Process Biochem. 55 (2017) 41–48. doi:10.1016/j.procbio.2016.12.029.
L. Liu, Y. Liu, Q. Lu, G. Chen, G. Wang*, Assessing comprehensive performance of biofilm formation and water quality in drinking water distribution systems, Water Sci. Technol. Water Supply. 17 (2017) 267–278. doi:10.2166/ws.2016.134.
V. Lazouskaya, T. Sun, L. Liu, G. Wang and Y. Jin*, Effect of surface properties on colloid retention on natural and surrogate produce surfaces, J. Food Sci. 81(2016): E2956–E2965. doi: 10.1111/1750-3841.13543.
G. Chen, Z. Ke, T. Liang, L. Liu*, G. Wang*, Shewanella oneidensis MR-1-induced Fe(III) reduction facilitates roxarsone transformation, PLoS One. 11 (2016) e0154017. doi:10.1371/journal.pone.0154017.
L. Liu*, X. Li, G. Xia, J. Jin, G. Chen, Spatial fuzzy clustering approach to characterize flood risk in urban storm water drainage systems, Nat. Hazards. 83 (2016) 1469–1483. doi:10.1007/s11069-016-2371-4.
N. Zhu, L. Liu, Q. Xu, G. Chen*, G. Wang*, Resources availability mediated EPS production regulate microbial cluster formation in activated sludge system, Chem. Eng. J. 279 (2015) 129–135. doi:10.1016/j.cej.2015.05.017.
L. Liu, Y. Le, J. Jin, Y. Zhou, G. Chen*, Chlorine stress mediates microbial surface attachment in drinking water systems, Appl. Microbiol. Biotechnol. 99 (2015) 2861–2869. doi:10.1007/s00253-014-6166-9.
H. Liu, G. Wang, J. Ge, L. Liu, G. Chen*, Fate of roxarsone during biological nitrogen removal process in wastewater treatment systems, Chem. Eng. J. 255 (2014) 500–505. doi:10.1016/j.cej.2014.06.030.
T. Liang, Z. Ke, Q. Chen, L. Liu, G. Chen*, Degradation of roxarsone in a silt loam soil and its toxicity assessment, Chemosphere. 112 (2014) 128–133. doi:10.1016/j.chemosphere.2014.03.103.
G. Chen, N. Zhu, Z. Tang, P. Ye, Z. Hu, L. Liu*, Resource availability shapes microbial motility and mediates early-stage formation of microbial clusters in biological wastewater treatment processes, Appl. Microbiol. Biotechnol. 98 (2014) 1459–1467. doi:10.1007/s00253-013-5109-1.
Q. Guo, L. Liu, Z. Hu, G. Chen*, Biological phosphorus removal inhibition by roxarsone in batch culture systems, Chemosphere. 92 (2013) 138–142. doi:10.1016/j.chemosphere.2013.02.029.
Y. Zhou, J. Jin*, L. Liu, L. Zhang, J. He, Z. Wang, Inference of reference conditions for nutrient concentrations of Chaohu Lake based on model extrapolation, Chinese Geogr. Sci. 23(2013): 35–48. doi:10.1007/s11769-012-0571-8
L. Liu*, E. Zechman, G. Mahinthakumar and S. Ranjithan, Identifying Contaminant Sources for Water Distribution Systems Using a Hybrid Method, Civ. Eng. Environ. Syst. 29(2012): 123–136. doi:10.1080/10286608.2012.663360.
L. Liu*, E. Zechman, G. Mahinthakumar and S. Ranjithan, Coupling of logistic regression analysis and local search methods for characterization of water distribution system contaminant source, Eng. Appl. Artif. Intel. 25(2012): 309–316. doi:10.1016/j.engappai.2011.10.009.
J. Jin, Y. Wei*, L. Zou, L. Liu, W. Zhang, Y. Zhou, Forewarning of sustainable utilization of regional water resources: a model based on BP neural network and set pair analysis, Nat. Hazards 62(2012): 115–127. doi:10.1007/s11069-011-0037-9.
J. Jin, Y. Wei*, L. Zou, L. Liu, J. Fu, Risk evaluation of China’s natural disaster systems: an approach based on triangular fuzzy numbers and stochastic simulation, Nat. Hazards 62(2012): 129–139. doi:10.1007/s11069-011-0005-4.
L. Liu*, A. Sankarasubramanian and S. Ranjithan, Logistic regression analysis to estimate contaminant sources in water distribution systems, J. Hydroinform. 13(2011): 545–557. doi:10.2166/hydro.2010.106.
L. Liu*, S. Ranjithan and G. Mahinthakumar, Contamination source identification in water distribution systems using an adaptive dynamic optimization procedure, J. Water Res. Plan. Man. 137(2011): 183–192. doi:10.1061/(ASCE)WR.1943-5452.0000104.
P. Zhou, Y. Zhou*, J. Jin, L. Liu, Z. Wang, L. Cheng, L. Zhang, An improved Markov chain model based on autocorrelation and entropy techniques and its application to state prediction of water resources, Chinese Geogr. Sci. 21(2011): 176–184. doi:10.1007/s11769-011-0447-3.
L. Liu*,
S. Ranjithan, An adaptive optimization technique for dynamic
environments. Eng. Appl. Artif. Intel. 23(2010): 772–779.
doi:10.1016/j.engappai.2010.01.00.