您的浏览器版本太低,请使用IE9(或以上)、谷歌、火狐等现代浏览器。360、QQ、搜狗等浏览器请使用极速模式。
研究课题

王钢 教授

发布日期:2023-03-21浏览次数:信息来源:土壤和水环境生物物理实验室

个人信息:

王钢(博士)

教授,博导,国家海外高层次青年人才(2016

中国农业大学土地科学与技术学院土壤与水科学系 主任

中国农业大学国家乡村振兴研究院革命老区研究中心 副主任

中国农业大学科研诚信委员会 委员

中国农业大学领军教授(B类)、青年创新团队首席科学家

中国科协财政项目评审专家

北京党外高级知识分子联谊会 理事

邮编:北京100193

电话:+86 10 6273 558;手机:+86 137 1603 2678

电子邮件: gangwang@cau.edu.cn

个人主页:

https://www.researchgate.net/profile/Gang-Wang-155

/art/2020/9/14/art_38010_702408.html


研究方向:

王钢博士领导的土壤和水生态系统生物物理研究组Soil & Water Ecosystems Biophysics,以下称“SWEB”)主要研究方向包括:1)环境和农林废弃物资源化利用技术与碳中和绿色可持续发展;2)土壤关键养分元素和水资源的生物地球化学循环规律和农业高效利用;3)微生物多样性的成因与维持机制以及其环境和生态效应;4)土壤健康和全球/区域“土地--粮食-气候”纽带关系;已在包括《Current Biology》、《The ISME Journal》、《PNAS》、《ISME communication》《Soil Biology and Biochemistry》、《npj Biofilms Microbiomes土壤学报》、《微生物学报等主流期刊发表研究论文 60 余篇,引用 2200 余次,H-index 21参与编写国际土壤盐渍化白皮书《Critical knowledge gaps and research priorities in global soil salinity》(《Advances in Agronomy》,2021)。主持包括国家海外高层次青年人才项目、国家重点研发计划专项课题、国家自然科学基金项目和美国农业部AFRI Grant项目(副主持)等在内的多项科研项目。

 

工作经历:

2019.10 – 至今:教授/系主任,中国农业大学,土地科学与技术学院 土壤与水科学系,北京

2020.022020.08:访问教授,苏黎世联邦理工(瑞士),环境系统科学系,苏黎世

2016.042019.09:教授,中国农业大学,资源与环境学院,北京

2016.072016.08:访问教授,特拉华大学美国,植物与土壤科学系,纽瓦克

2014.092016.03:副教授,中国农业大学,资源与环境学院,北京

2007.022008.03:市场部经理,上海宝冶工程技术有限公司,上海

2005.082007.01:研发部主任(兼主任助理),国家标准件产品质量监督检验中心,嘉兴

 

学习经历: 

2014.2 – 2014.7:博士后,特拉华大学(美国),植物与土壤科学系

2012.6 – 2014.1:博士后,苏黎世联邦理工(瑞士),陆生生态系统研究所

2008.8 – 2012.5:博士研究生,苏黎世联邦理工(瑞士),陆生生态系统研究所

2002.9 – 2005.6:硕士研究生,中国科学技术大学(合肥),化学系

1997.9 – 2002.5:本科(5年制),中国科学技术大学(合肥),应用化学系

 

近期获奖情况:

2016:获聘国家海外高层次青年人才

2015:密歇根州立大学VISTAS 高级研究Fellow,美国

2010:《第一届土壤结构与土壤物理生物化学过程国际会议》最佳报告奖,维博格堡,丹麦

2008:瑞士苏黎士联邦理工全额博士奖学金

 

近期科研项目情况:

1)       国家重点研发计划专项,课题“保护性农业提升黑土地水土资源承载力技术模式与示范”,390万元,2022-11至2027-10,主持

2)     国家自然科学基金-面上项目,“土壤噬菌体‑细菌互作模式及其对土壤微生物多样性和群落结构的影响机制研究”,66万元,2023-01至2026-12,主持

3)       教育部高端外国专家引进计划,“黑土地保护与碳中和可持续利用关键技术集成和示范应用”,36万元,2022-01至2023-12,主持

4)       中央高校基本科研业务费专项资金项目,“中国农业大学2115人才培育发展支持计划青年科学家创新团队”,80万元,2019-10至2023-09,主持

5)       中央高校基本科研业务费专项资金项目,土壤学科国际化提升《土壤与水科学国际合作线上交流项目》本科教改项目,36000元,2021-01至2021-12,主持

6)       中央高校基本科研业务费专项资金项目,土壤学科国际化提升在线讲座和课程《全球视野提升在线土壤学课程》本科教改项目,10000元,2020-01至2020-12,主持

7)       教育部外国文教专家项目,“黑土地现代农业与土地保护关键技术研究与展望”,44万元,2019-01至2020-12,主持

8)       国家自然科学基金-面上项目,“京津冀典型地区再生水灌溉农田土壤抗生素抗性基因分布特征与演变模式”,74.4万元,2019-01至2022-12,主持

9)       中央高校基本科研业务费专项资金项目,“长期耕作措施对农田土壤抗性基因分布及其演变的影响模式研究”,20万元,2019-01至2019-12,主持

10)     国家海外高层次青年人才项目,300万元,2016至2019,主持

11)     国家重点研发计划专项,子课题“不同地力水平土壤微生物-微结构互作对养分(氮磷)持留与供应水平的影响”,95万元,2016-01至2020-12,主持

12)     中央高校基本科研业务费专项资金项目,“北方旱地耕作管理措施对作物生长和根区土壤特性的影响及机理”,49.7万元,2016-01至2016-12,主持

13)     中央高校基本科研业务费专项资金项目,“基于定量离散化生物物理模型的土壤微生物多样性影响机制研究”,100万元,2015-01至2017-12,主持

14)     国家自然科学基金-青年基金,“基于微观水文-物理模型的土壤微生物多样性影响机制研究”,26万元,2015-01至2017-12,主持

15)     美国农业部AFRI Grant,“Hydro-biophysical processes shaping microbial contamination in fresh produce”,50万美元,2013-2016,副主持(负责经费约10万美元)


 

教学经历:

《土地碳中和生态系统》      本科生课程(中国农业大学) 春季,2022-

《土壤学A》          本科生课程(中国农业大学) 春季,2021-

《土壤学进展》       本科生课程(中国农业大学) 秋季,2018-

《土壤环境质量》      本科生课程(中国农业大学) 秋季,2018-2021

《土壤化学》        研究生课程(中国农业大学) 春季,2016-2018

 

学术兼职:

《土壤学报》执行编委、《Soil Ecology Letters》编委、《European Journal of Soil Science》客座主编《Land》客座编辑

中国土壤学会理事、中国土壤学会土壤物理专委会副主任、中美土壤学会双边合作工作组创始成员、中国土壤学会国际合作与交流工作委员会委员、中国土壤学会土壤质量标准化工作委员会委员、北京土壤学会理事、中国科协财政项目会评专家、北京市农业技术系列高级职称会评专家、四川省崇州市乡村振兴专家咨询委员会委员等

中国土壤学会会员、中国环境科学学会会员、国际微生物生态学会会员、美国地球物理联盟, 美国土壤学会, 美国农学会会员

 

论著

1.      王钢*,陈国炜, 王燕. 微生物在土壤重金属污染修复中的作用和影响机制. 《设施农田生态系统重金属污染控制原理与技术》, 乔玉辉等 . 中国农业大学出版社, 2016.

2.      王钢*,等. 优化水质——有害生物去除. 《欧盟水肥一体化技术》, 邹国元等,译. 中国农业出版社, 2020.

3.      Hopmans JW, …, 王钢, . 世界盐渍化土壤现状与研究挑战白皮书“Critical knowledge gaps and research priorities in global soil salinity. Advances in Agronomy (ISSN 0065-2113), Elsevier 出版社, 2021, 169, pp 1-192. 

 

博士论文

Wang G. Linking Diffusional Heterogeneity and Aquatic Habitat Fragmentation with Microbial Coexistence and Diversity in the Vadose Zone. ETH Zurich, 2012. http://dx.doi.org/10.3929/ethz-a-007580042

 

期刊论文(*通讯作者)

  1. Ye X, Ran HY, Wang X, Li GT, Ambus P, Wang G, Zhu K*. 2023. Delayed nitrogen application after straw and charred straw addition altered the hot moment of soil N2O emissions. European Journal of Soil Sciencehttps://doi.org/10.1111/ejss.13349

  2. Ruan CJ, Ramoneda J, Gogia G, Wang G*, Johnson D*. 2022. Fungal Hyphae Regulate Bacterial Diversity and Plasmid-Mediated Functional Novelty During Range Expansion. Current Biology, 32, 1–10. doi.org/10.1016/j.cub.2022.11.009. 

  3. Manzoor N, Ali L, Ahmed T, Rizwan M, Ali S, Shahid MS, Schulin R, Liu Y, Wang G*. 2022. Silicon oxide nanoparticles alleviate chromium toxicity in wheat (Triticum aestivum L.). Environmental Pollution, 120391.

  4. Manzoor N, Ali L, Ahmed T, Noman M, Adrees M, Shahid MS, Ogunyemi SO, Radwan KSA, Wang G*, Zaki HEM*. 2022. Recent Advancements and Development in Nano-Enabled Agriculture for Improving Abiotic Stress Tolerance in Plants, Frontiers in Plant Science, 13: 951752.

  5. Zhu K, Ran HY, Wang FF, Ye X, Niu LG, Schulin R, Wang G*. 2022. Conservation tillage facilitated soil carbon sequestration through  diversified carbon conversions. Agriculture, Ecosystems and Environment, 377: 108080.

  6. 王燕阮楚晋谢文琳朱堃陈国炜刘莹王钢*. 2022. 微观水分和养分条件对铜绿假单胞菌的噬菌体裂解宿主过程的影响土壤学报.DOI:10.11766/trxb202201070528

  7. 吴汉卿, 阮楚晋, 万炜, 李胜龙, 裴丁仪, 韩苗, 陈国炜, 刘莹, 朱堃, 王钢*. 2022. 基于知识图谱分析的土壤氮循环功能基因研究进展. 土壤学报.DOI:10.11766/trxb202110270580

  8. 韩苗阮楚晋韩峥魏芯蕊刘莹朱堃王钢*.2022. 空间组织模式:微生物群落组装的“游戏”规则微生物学通报. doi.org/10.13344/j.microbiol.china.220149
  9. 朱晓艳韩苗韩天富韩峥王钢*.2022. 铜绿假单胞菌在液滴界面的二维和三维运动特征. 微生物学报.doi.org/10.13343/j.cnki.wsxb.20210752

  10. Du Bang, Wang Shudong, Chen Guowei, Wang Gang, Liu Li. 2022. Nutrient starvation intensifies chlorine disinfection-stressed biofilm formation. Chemosphere. 295, 133827.

  11. Kun Zhu, Xin Ye, Hongyu Ran, Peixuan Zhang, Gang Wang*. 2022. Contrasting effects of straw and biochar on microscale heterogeneity of soil O2 and pH: Implication for N2O emissions. Soil Biology and Biochemistry. 108564.

  12. Chen GW, Hu Z, Ebrahimi A, Johnson D, Wu FZ, Sun YF, Shen RH, Liu L, Wang G. 2021. Chemotactic movement and zeta potential dominate Chlamydomonas microsphaera attachment and biocathode development. Environmental Technology. 1-35.

  13. Chen G, Hu Z, Ebrahimi A, Johnson DR, Wu F, Sun Y, Shen R, Liu L, Wang G*. 2022. Electrotaxis-mediated cell motility and nutrient availability determine Chlamydomonas microsphaera-surface interactions in bioelectrochemical systems. Bioelectrochemistry 143, 107989.

  14. Hopmans JW, Qureshi A , Kisekka I, Munns R, Grattan SR, Rengasamy P, Ben-Gal A, Assouline S, Javaux M, Minhas PS, Raats PAC, Skaggs TH, Wang G, De Jong van Lier Q, Jiao H, Lavado RS, Lazarovitch N, Li B, Taleisnik E. 2021. Critical knowledge gaps and research priorities in global soil salinity. Advances in Agronomy, 169: 1-191.

  15. Ruan CJ, Ramoneda J, Chen GW, Johnson DR*, Wang G*. 2021. Evaporation-induced hydrodynamics promote conjugation-mediated plasmid transfer in microbial populations. ISME Communications, 1, 5.

  16. Ruan CJ, Niu XY, Xiong GZ, Chen GW, Wu HQ, Ma ZC, Zhu K, Liu Y, Wang G*. 2021. Phenotypic and genotypic characterization of the new Bacillus cereus phage SWEP1. Archives of Virology, 166(11): 3183-3188.

  17. 阮楚晋, 熊广州, 牛欣尧, 陈国炜, 吴汉卿, 马泽超, 朱堃, 刘莹, 王钢*. 2021. 一个东北农田黑土样品宏病毒组的初步分析. 土壤学报.DOI:10.11766/trxb202104230215

  18. Sun YF, Sun ML, Chen GW, Chen X, Li BG, Wang G*. 2021. Aggregate sizes regulate the microbial community patterns in sandy soil profile. Soil Ecology Letters. (Accepted)

  19. Du MY, Wang L, Ebrahimi A, Chen GW Shu SY, Zhu K, Shen CY, Li BG, Wang G*. 2021. Extracellular polymeric substances induced cell-surface interactions facilitate bacteria transport in saturated porous. Ecotoxicology and Environmental Safety. 218: 112291. 

  20. 韩苗, 朱晓艳陈国炜万小铭王钢*. 2022. 解钾菌及其释钾微观机制的研究进展.土壤学报. 59(2): 334-348.

  21. Manzoor N, Ahmed T, Noman M, Shahid M, Nazir M , Ali L, Alnusaire T , Li B, Schulin R, Wang G*. 2021. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. Science of The Total Environment. 145221.

  22. Ahmed T, Noman M, Manzoor N, Shahid M, Abdullah M, Ali L, Wang G, Hashem A, Al-Arjani AF, Alqarawi AA, Abd-Allah EF, Li B*. 2021. Nanoparticle-based amelioration of drought stress and cadmium toxicity in rice via triggering the stress responsive genetic mechanisms and nutrient acquisition. Ecotoxicology and Environmental Safety. 209(1): 111829.

  23. Chen G, Zhu N, Hu Z, Liu L, Wang GQ, Wang G*. 2021. Motility changes rather than EPS production shape aggregation of Chlamydomonas microsphaera in aquatic environment. Environmental Technology, 42(18): 2916-2924.

  24. Wang Y, Chen G, Sun Y, Zhu K, Jin Y, Li B, Wang G*. 2022. Different agricultural practices specify bacterial community compositions in the soil rhizosphere and root zone. Soil Ecology Letters, 4, 18-31.

  25. Wang G, Han N, Liu L, Ke Z, Li B, Chen G*. 2020. Molecular density regulating electron transfer efficiency of S. oneidensis MR-1 mediated roxarsone biotransformation. Environmental Pollution. 262, 114370.

  26. Zhao R, Chen G, Liu L, Zhang W, Sun Y, Li B, Wang G. 2020. Bacterial foraging facilitates aggregation of Chlamydomonas microsphaera in an organic carbon source-limited aquatic environment. Environmental Pollution. 259, 113924.

  27. Du B, Gu Y, Chen G, Wang G, Liu L. 2020. Flagellar motility mediates early-stage biofilm formation in oligotrophic aquatic environment. Ecotoxicology and Environmental Safety. 194, 110340.

  28. 朱晓艳, 沈重阳, 陈国炜, 张伟, 李保国, 王钢*. 2019. 土壤细菌趋化性研究进展. 土壤学报. 56(2), 259-275.

  29. Tang Y, Wang X, Yan Y, Zeng H, Wang G, Tan W, Liu F, Feng X*. 2019. Effects of myo-inositol hexakisphosphate, ferrihydrite coating, ionic strength and pH on the transport of TiO2 nanoparticles in quartz sand. Environmental Pollution. 252, 1193-1201.

  30. Chen GW, Xu R, Liu L, Shi H, Wang GQ, Wang G*. 2018. Limited carbon source retards inorganic arsenic release during roxarsone degradation in Shewanella oneidensis microbial fuel cells. Applied Microbiology and Biotechnology. 102(18), 8093–8106.

  31. Wang G, Wang Y, Liu L, Jin Y, Zhu N, Li X, Li BG, Wang GQ, Chen GW*. 2018. Comprehensive assessment of microbial aggregation characteristics of activated sludge bioreactors using fuzzy clustering analysis. Ecotoxicology and Environmental Safety. 162, 296-303.

  32. Chen GW, Liu H, Zhang W, Li BG, Liu L, Wang G*. 2018. Roxarsone exposure jeopardizes nitrogen removal and regulates bacterial community in biological sequential batch reactors. Ecotoxicology and Environmental Safety. 159, 232-239.

  33. Zhang C, Yan A, Wang G, Jin C,Chen Y, Shen C*. 2018. Impact of flow velocity on transport of graphene oxide nanoparticles in saturated porous media. Vadose Zone J. 17, 180019. 

  34. Chen Z, Zhang W*, Wang G, Zhang Y, Gao Y, Boyd SA, Teppen BJ, Tiedje JM, Zhu D*, Li H*. 2017. Bioavailability of soil-sorbed tetracycline to Escherichia coli under unsaturated conditions. Environ Sci Technol. 51(11), 6165-6173.

  35. Liu L, Hu QY, Le Y, Xu Q, Chen GW, Wang G*. 2017. Chlorine mediated EPS production shapes early-stage biofilm formation in drinking water distribution systems. Process Biochemistry. 55, 41-48.

  36. Liu L, Liu Y, Lu Q, Chen G, Wang G*. 2017. Assessing comprehensive performance of biofilm formation and water quality in drinking water distribution systems. Water Supply. 17.1: 267-278.

  37. Lazouskaya V, Sun T, Liu L, Wang G, Jin Y*. 2016. Effect of surface properties on colloid retention on natural and surrogate produce surfaces. J. Food Sci. 81(12), E2956-E2965.

  38. Chen GW, Ke ZC, Liang T, Liu L*, Wang G*. 2016. Shewanella oneidensis MR‑1-induced Fe(III) reduction facilitates roxarsone transformation. PLoS One. 11(4), e0154017.

  39. Zhu N, Liu L, Xu Q, Chen GW*, Wang G*. 2015. Resources availability mediated EPS production regulates microbial cluster formation in activated sludge system. Chem Eng J. 279, 129-135.

  40. Wang G* and Or D. 2014. Trophic interactions induce spatial self-organization of microbial consortia on rough surface. Sci Rep. 4, 6757.

  41. Chen C, Hu KL*, Li W, Wang G, Liu G. 2014. Estimating the wet-end section of soil water retention curve by using the dry-end section. Soil Sci Soc Am J. 78(6), 1878-1883.

  42. Lazouskaya V, Wang LP, Or D, Wang G, Caplan JL, and Jin Y*. 2013. Colloid mobilization by fluid displacement fronts in channels. J. Colloid Interf Sci. 406, 44-50.

  43. Wang G and Or D*. 2013. Hydration dynamics promote bacterial coexistence on rough surfaces. ISME J. 7, 395.

  44. Wang G and Or D*. 2012. A hydration-based biophysical index for the onset of soil microbial coexistence. Sci Rep. 2,881. doi: 10.1038/srep00881.

  45. Dechesne A, Wang G, Gülez G, Or D and Smets BF*. 2010. Hydration controlled bacterial motility and dispersal on surfaces. PNAS 107, 14369.

  46. Wang G and Or D*, 2010. Aqueous films limit bacterial motility and colony expansion on partially saturated rough surfaces. Environ Microbiol. 12, 1363.

  47. Mu Y, Yu HQ*, Wang G. 2007. Evaluation of three methods for enriching H-2-producing cultures from anaerobic sludge. Enzyme Microb Technol. 40, 947.

  48. Mu Y, Yu HQ*, Wang G. 2007. A kinetic approach to anaerobic hydrogen-producing process. Water Res. 41, 1152.

  49. Mu Y, Wang G, Yu HQ*. 2006. Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures. Bioresour Technol. 97, 1302.

  50. Mu Y, Wang G, Yu HQ*. 2006. Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enzyme Microb Technol. 38, 905.

  51. Mu Y, Yu HQ*, Wang G. 2006. Permeabilities of anaerobic CH4-producing granules. Water Res. 40, 1811.

  52. Wang G, Mu Y, Yu HQ*. 2005. Response surface analysis to evaluate the influence of pH, temperature and substrate concentration on the acidogenesis of sucrose-rich wastewater. Biochem Eng J. 23, 175.

  53. Hu ZH, Wang G, Yu HQ*. 2004. Anaerobic Degradation of Cellulose by Rumen Microorganisms at Various pH Values. Biochem Eng J. 21, 59.

  54. Fu RQ, Xu TW*, Wang G, Yang WH,  Pan ZX. 2003. PEG-catalytic water splitting in the interface of a bipolar membrane. J Colloid Interf Sci. 263, 386.

 

邀请报告和会议摘要

1.  王钢. 土壤生物地球化学微观界面过程与可持续农业发展. 西北农林科技大学. 2022年8月4日. 西安-杨凌(特邀报告)

2.  王钢. 土壤生物地球化学微观界面过程与功能. 中国土壤学会土壤物理专业委员会2022年会. 202283. 西安(特邀报告)

3.   王钢. 土壤生物地球化学微观界面过程与可持续农业发展. 中国科学院沈阳应用生态研究所. 2022723. 沈阳(特邀报告)

4.   王钢. 微观生物地球化学过程与碳中和可持续农业. 浙江农林大学. 2022623. 杭州-临安(特邀报告)

5.   王钢. 土壤健康夯实农业绿色发展. 中国自然资源部土地工程技术创新中心2021年度学术年会. 20211216. 北京(特邀报告)

6.   王钢. 微观水文物理过程调控微生物群落结构及水平基因迁移. 第七次全国土壤生态与健康学术研讨会. 2021116-7. 南昌  (特邀报告)

7.   王钢. 土壤微观生物地球化学过程与功能. 第七届青年地学论坛. 202179-11. 贵阳  (特邀报告)

8.   王钢. 微观生物地球化学过程与碳中和可持续农业. 中国土壤学会土壤生物和生化专业委员会2021年会. 2021621. 合肥(特邀报告)

9.   王钢. 微生物视野下的生物地球化学过程. 第二届全国土壤分析技术研讨会. 2021526-29. 敦煌. (特邀报告)

10. 王钢. 微观生物地球化学过程与碳中和可持续农业. 中国农业大学苏州有机循环研究院. 2021514. 苏州(特邀报告)

11. 王钢. 微生物在微观界面的活动与互作过程. 宁波大学. 202149. 宁波. (特邀报告)

12. 王钢. Micro-hydrophysical Processes Regulate Soil Microbial Interactions and Functions. 2020年12月8日. 伯明翰大学IMI Lecture, 英国伯明翰大学. (特邀报告)

13. 王钢. 土壤健康夯实绿色农业. 20201128, 2020中国农业绿色发展高峰论坛, 南京. (特邀主旨报告)

14.  Wang G. Microbial Interactions at Small-scales Biogeointerfaces and Ecological Functions. October 24, 2020. Zhejiang University, Hangzhou. (特邀报告)

15. Wang G. Micro-hydrophysical Processes Regulate Soil Microbial Interactions and Functions. July 2, 2019. Workshop on Improving Water and Nutrient Utilization and Salinity Control in Arid and Semi-arid Regions. Beijing. (Invited)

16. 王钢. 微观尺度环境微生物界面互作过程机制及生态效应. 齐鲁工业大学. 2019617. 济南. (特邀报告)

17.Wang G. Microbial biophysicochemical process and roxarsone biotransformation. June 14, 2019. 8th Geomicrobiology Conference, Qingdao. (Invited)

18. 王钢. 环境微生物界面互作过程与生态功能. 2019531. 第十三届吉林省科协青年科学家论坛. 中国科学院东北地理与农业生态研究所, 长春. (特邀报告)

19.王钢. 环境微生物微观界面过程及生态效应. 2019530. 中国科学院沈阳应用生态研究所, 沈阳. (特邀报告)

20.Wang G. Microbial Interactions at Soil Pore-Water-Air Interfaces and Functions. Jan. 09, 2019. South China Normal University, Guangzhou. (Invited)

21. Wang G. Soil Microbial Activity and Interactions at Pore-Water-Air Interfaces: Modelling and Observations. Jan. 10, 2019. Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou. (Invited)

22. 王钢. Micro-hydrophysical Processes Shape Soil Microbial Activity and Functions. 20181222. 北京大学“生态讲坛2018”特邀报告.

23.Wang G. Soil microbial interactions at water-solid-air interfaces and ecological functions. Nov. 10, 2018. Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha. (Invited)

24. Wang G. Micro-physicochemical processes shape soil bacterial activity and functions. Oct. 30, 2018. Soil Chemistry Anural Meeting, Soil Science Society of China, Guiyang. (Invited)

25. Wang G. Microbes-environment interactions and ecological functions. Oct. 26, 2018. Sun Yat-Sen University, Guangzhou. (Invited)

26. Wang G. Environmental microbiology processes: agent-based modelling and applications. Sept. 28, 2018. The 355th Young Scientists Forum of the China Science and Technology Society. Xuzhou, China. (Invited)

27. Wang G. Environmental microbial biophysical processes at microscale interfaces and their ecological implications. June 27, 2018. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China. (Invited)

28. Wang G. Environmental biophysics processes at micropore interface. June 4, 2018. Huazhong Agricultural University, Wuhan, China. (Invited)

29. Wang G. Microscale Soil-Microbe Interactions & Bioremediation. May 25, 2018. 2018 Sino-US Soil Remediation High Level Symposium, Weifang, China. (Invited)

30. Wang G. Impacts of soil micro-hydrophysicochemical processes on microbial diversity and their ecological functions. April 3, 2018. Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China. (Invited)

31. Wang G. Micro-hydro-biophysical Processes Shape Microbial Activity and Functions in Terrestrial Ecosystem. June 18, 2017. Shihezi University, Shihezi. (Invited)

32. Wang G. Soil Microbes−Environment Interactions and Impacts on Microbial Diversit. June 13, 2017. Xinjiang Agricultural University, Urumqi. (Invited)

33. Wang G. Micro-hydro-physical Processes Determine Soil Microbial Life Form. Sept. 16, 2015. Institute of Applied Ecology, Shenyang. (Invited)

34. Wang G. Hydro-physical Processes Shape Microbial Life form in Subsurface Soil. April 15, 2015. Michigan State University, East Lansing, Michigan. (Invited)

35. Wang G. Soil microbial diversity and links with organic farming. Jan. 11, 2015. Biodiversity and Organic Farming Annual Forum, China Agricultural University, Beijing. (Invited)

36. Wang G. Exploring microbial life on unsaturated soil surfaces. Feb. 27, 2014. University of Delaware, Newark, Delaware. (Invited)

37. Wang G. Biophysical processes shape microbial life form. 2013.12, China Agricultural University, Beijing. (Invited)

38. Wang G, Dani Or. Micro-scale Hydrological Processes Shape Microbial Life Form in Subsurface. July 10, 2013. China Agricultural University, Beijing. (Invited)

39. Wang G. Micro-hydrophysical processes influence soil microbial diversity. 2014.08, China Soil Physics Annual Meeting 2014 - Advances in Soil Physics and Ecological Security. Guilin, Guangxi.

40. Wang G and D Or. Trophic interactions induce spatial self-organization of microbial consortia on hydrated surfaces. rDay, 2013, Zurich, Switzerland.

41. Wang G and D Or. Trophic interaction and emergence of self-organized bacterial consortia on rough surface. FEMS 2013, 5th Congress of European Microbiologists, Leipzig, Germany, 2013.

42. Wang G and D Or. A hydration-based biophysical index for the onset of soil microbial coexistence. rDAY, 2012, Zurich, Switzerland.

43. Wang G and D Or. Self -organization of microbial consortia via trophic interactions on hydrated rough surfaces. ISME14 Roundtable meeting, 2012, Copenhagen, Denmark.

44. Wang G and D Or. A biophysical index for predicting hydration-mediated microbial diversity in soils. EGU2012, 2012, Vienna, Austria.

45. Wang G and D Or. Hydration-induced diffusion and motility constraints promote microbial diversity in unsaturated soil. ZHydro seminar 2011, Zurich, Switzerland.

46. Wang G and D Or. Constrained motility and nutrient diffusion shape bacterial colony morphology on partially hydrated rough surfaces. FEMS2011, 2011, Geneva, Switzerland.

47. Wang G and D Or. Hydration affects motility and nutrient diffusion and governs microbial coexistence on rough surfaces. CESAR 2010, 2010, Viborg, Denmark. 

48. Wang G and D Or. Heterogeneous nutrient fields shape microbial competition on rough surfaces. ITES seminar 2010, Zurich, Switzerland.

49. Wang G and D Or. Heterogeneous diffusion of two nutrients shape growth and dispersal patterns of competing bacterial species grown on partially saturated rough surfaces. RAISEBIO2010, 2010, Leipzig, Germany.

50. Wang G and D Or. Hydration effects on microbial motility and coexistence on unsaturated rough surfaces. SGM2009, 2009, Neuchâtel, Switzerland.

51. Wang G and D Or. Microbial Growth and Coexistence on Diffusion-limited Unsaturated Rough Surfaces. EGU2009, 2009, Vienna, Austria.

52. Wang G and D Or. Capillarity and Liquid Configuration Limit Bacterial Motility on Unsaturated Rough Surfaces. AGU2008, 2008, San Francisco, CA, USA.